Comparing two inversions of ACOS GOSAT column CO₂ measurements: flux estimates and uncertainties

David Baker
CIRA/Colorado State University

Junjie Liu
NASA/Jet Propulsion Laboratory

NASA Carbon Monitoring System
Atmospheric Working Group
24 June 2015

Outline

- Comparison of flux uncertainty from two similar GOSAT flux inversions (2010-2011)
- Comparison of flux estimates from same two inversions
- Impact of other assumptions (2009-2014)
 - Subset of GOSAT data used
 - High- and medium-gain nadir data over land
 - Glint data over ocean
 - Prior fluxes used

Uncertainty in estimates of C storage

The challenge: many approaches to characterizing uncertainty - details are important when comparing

Example -- compare two closely-related quantities from CMS flux and biomass projects:

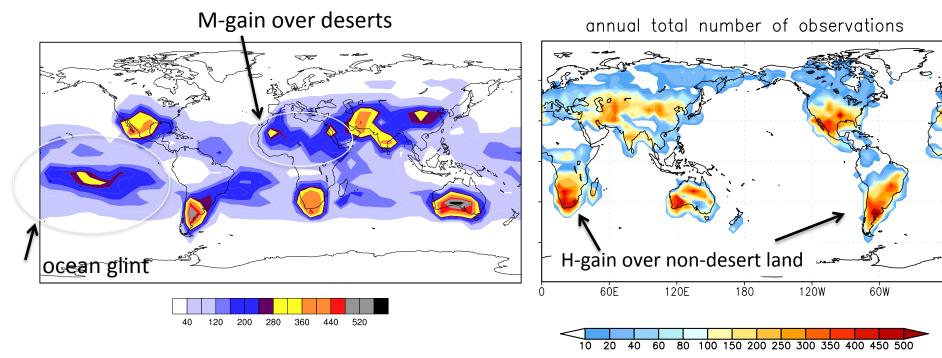
- Biomass projects: carbon stored in trees
 - only above-ground biomass
 - only in sampled "forested" areas
- Flux projects: carbon cycling through continents, as inferred from top-down atmospheric inversions. Includes:
 - C that runs off into ocean via rivers
 - C stored in grasslands, scrublands, wetlands, etc.
 - C stored below ground in roots/soils
 - C stored in sediments behind dams

Uncertainty estimates from OSSEs

- In past, flux uncertainties taken from a posteriori covariance matrix given by flux inversion
- For large problems, matrices get too large to use traditional batch inversion
- More efficient methods, like variational data assimilation ("4Dvar"), required -- they obtain their efficiency by jettisoning the full covariance calculation
- Uncertainties calculated instead with observing system simulation studies (OSSEs):
 - A set of "true" fluxes is chosen, run through transport model to get "true" concentrations
 - Random measurement errors added on to get "true" measurements
 - These measurements are assimilated into a global CO_2 flux inversion system, starting from a (different) initial guess of fluxes, to get a final flux estimate
 - The final flux estimate is compared to the know "true" fluxes to calculate the flux errors from the inversion
 - This may be done multiple times with different draws of noise for the measurement errors and the prior-truth flux errors
 - Uncertainty statistics calculated from the posterior truth flux differences

Comparison of flux uncertainties from two similar OSSEs using GOSAT atmospheric CO2 data

David Baker, CIRA/CSU


- 4DVar data assimilation
- PCTM transport model
- MERRA met drivers
- Surface CO₂ fluxes estimated:
 - weekly
 - on 4.5°x6° (lat/lon) grid
 - both land and ocean areas
- GOSAT X_{CO2} retrievals used:
 - both H- & M-gain over land
 - · glint over ocean
- Uncertainty calculation:
 - monte carlo, N = 1
 - prior, true fluxes from two different carbon models

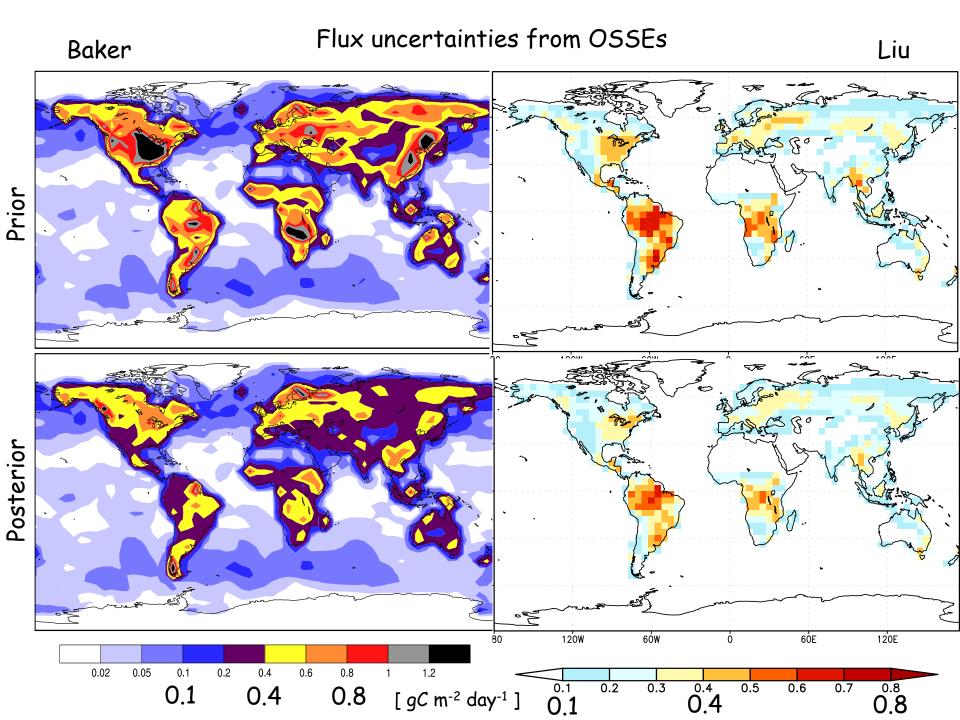
Junjie Liu, NASA/JPL

- 4DVar data assimilation
- GEOS-Chem transport model
- MERRA met drivers
- Surface CO₂ fluxes estimated:
 - monthly
 - on 4°x5° (lat/lon) grid
 - land areas only
- GOSAT X_{CO2} retrievals used:
 - · H-gain over land
- Uncertainty calculation:
 - monte carlo, N = 60
 - random prior-truth flux differences consistent with P_o assumed in inversion

GOSAT soundings used

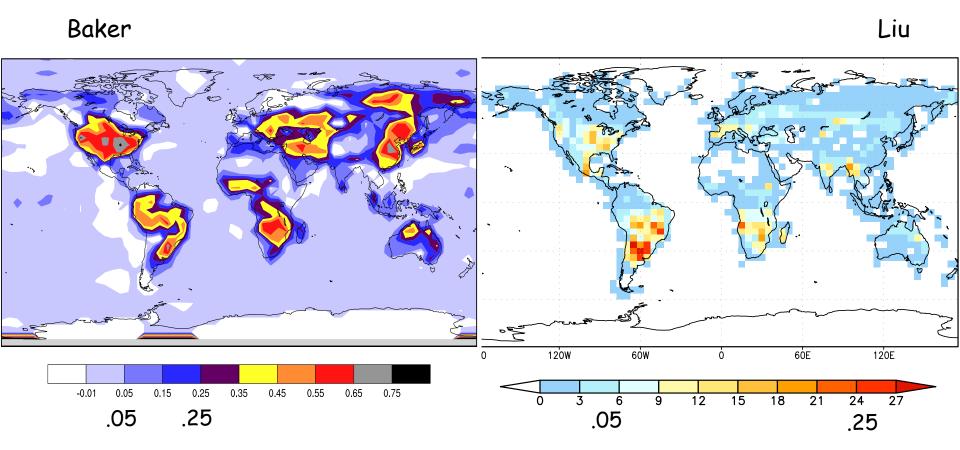
Baker

Both H- & M-gain data over land Glint data over oceans


H-gain data over land

Measurement uncertainties assumed:

- 1.7 ppm (1σ) -- H-gain land
- 1.5 ppm (1σ) -- M-gain land
- 1.0 ppm (1σ) -- ocean glint

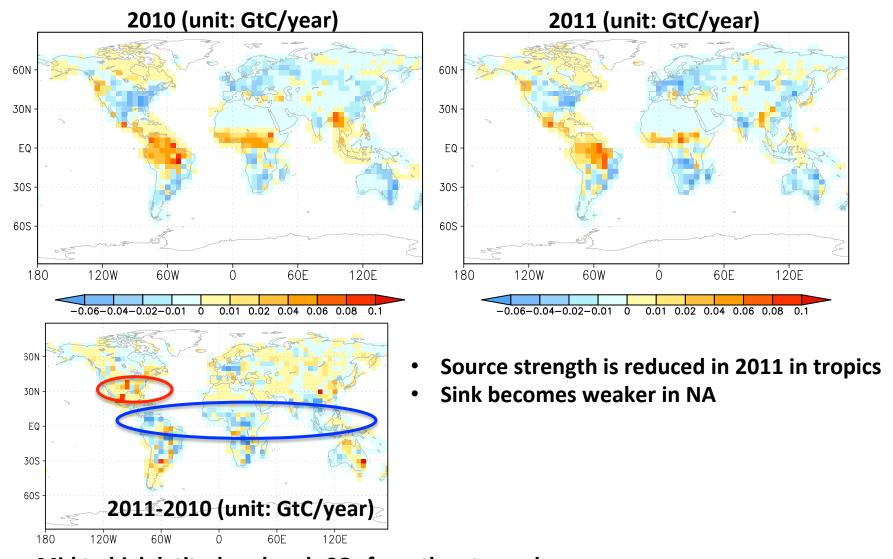

Measurement uncertainties assumed:

 1.0 - 2.5 ppm (1σ) -- H-gain land (using the actual uncertainties calculated for each ACOS retrieval)

Uncertainty reduction statistic

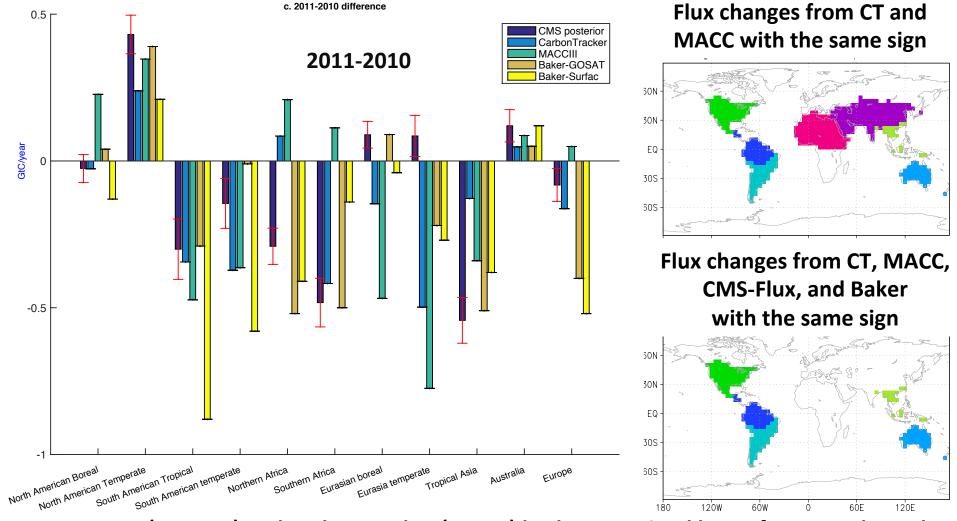
$$R = (\sigma_{prior} - \sigma_{post}) / \sigma_{prior}$$

- Uncertainty reductions largest where initial errors largest
- Patterns of a priori uncertainty assumed are quite different
- Overall uncertainty reduction differs by factor of 3
- Final uncertainties for Liu lower, due to tighter prior

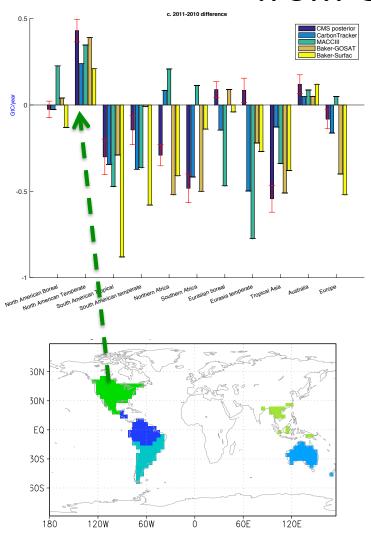

Conclusions - flux uncertainty

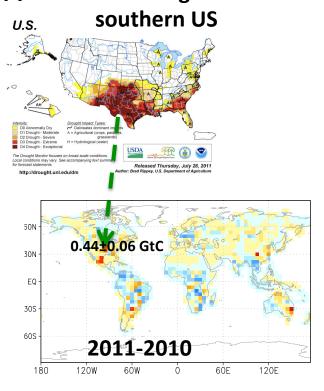
- Even when two groups are trying to solve for the same thing, large differences may occur due to assumptions
- Here, largest differences due to:
 - Assumed prior-truth flux differences
 - Volume/type of GOSAT data used
 - Measurement uncertainties assumed
 - Monte carlo approach used
 - Prior-truth flux differences
 - Number of draws of random errors

Outline


- Comparison of flux uncertainty from two similar GOSAT flux inversions (2010-2011)
- Comparison of flux estimates from same two inversions
- Impact of other assumptions (2009-2014)
 - Subset of GOSAT data used
 - · High- and medium-gain nadir data over land
 - Glint data over ocean
 - Prior fluxes used

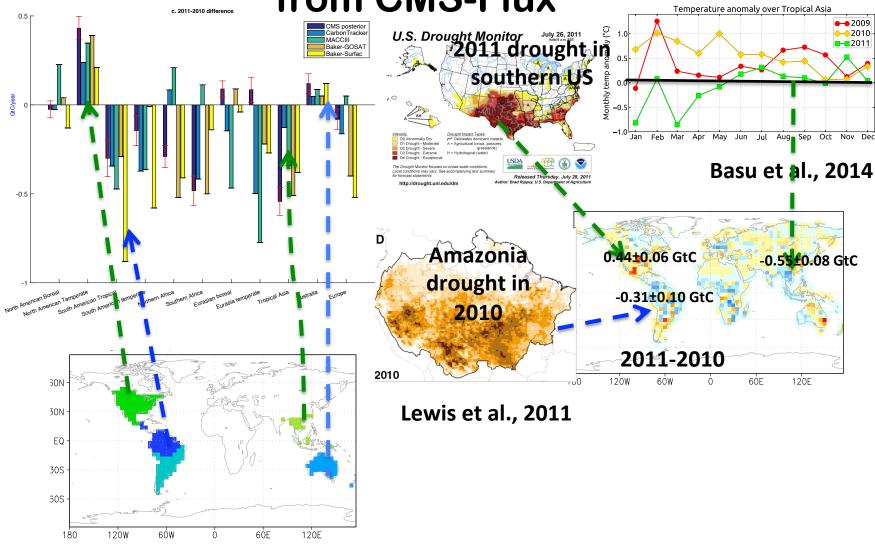
Liu CMS net biospheric flux (including fire) estimated for 2010 and 2011


- Mid to high latitudes absorb CO₂ from the atmosphere
- Tropics release CO₂ in both years


Flux changes (2011-2010): Liu & Baker GOSAT inversions, MACCIII, and CarbonTracker

- MACCIII (ECMWF) and CarbonTracker (NOAA) both constrained by surface CO₂ obs, only
- RMS(CT-MACC)=0.25 GtC;
- RMS(CMS-MACC)=0.27 GtC; RMS(CMS-CT)=0.41 GtC


Possibly correct flux change signals from CMS-Flux 2011 drought in


Flux changes from CMS-Flux detect the impact of 2011 southern drought on CO₂
 fluxes

Possibly correct flux change signals from CMS-Flux

Flux changes from CMS-Flux detect the relative impact of 2010 Amazonia drought

Possibly correct flux change signals from CMS-Flux

 Anomaly high temperature in 2010 produces large source in Tropical Asia (Basu et al., 2014) Possibly correct flux change signals from CMS-Flux

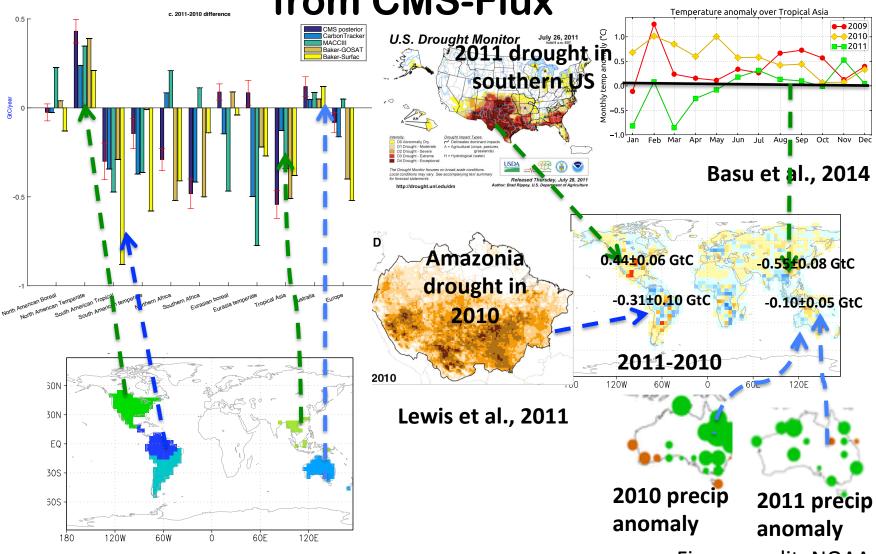
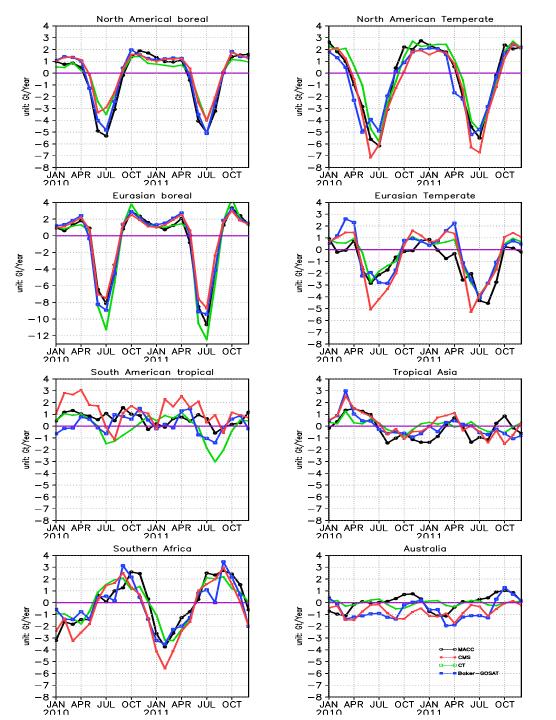
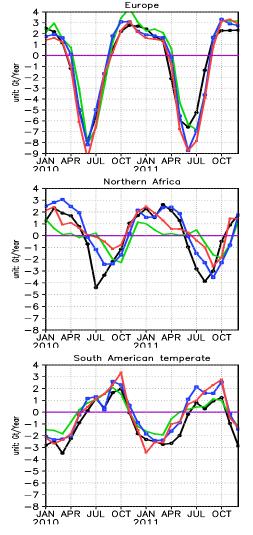




Figure credit: NOAA

 Flux changes from CMS-Flux detect the flux changes due to precipitation anomaly in Australia

Liu - GOSAT Baker-GOSAT MACC-III CarbonTracker

Monthly flux estimates 2010-2011

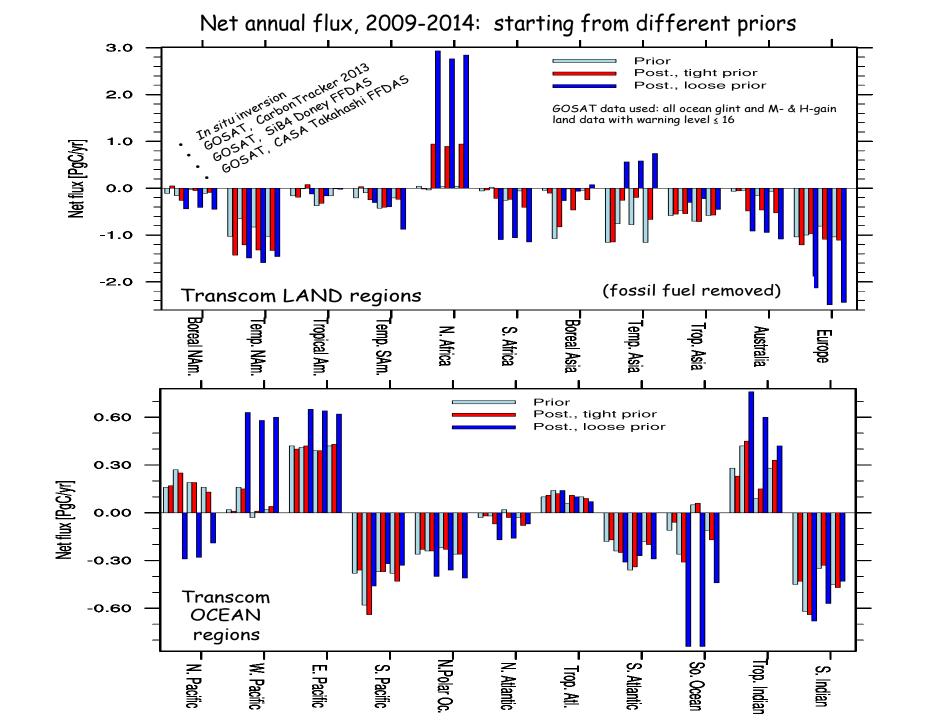
Conclusions - flux estimates

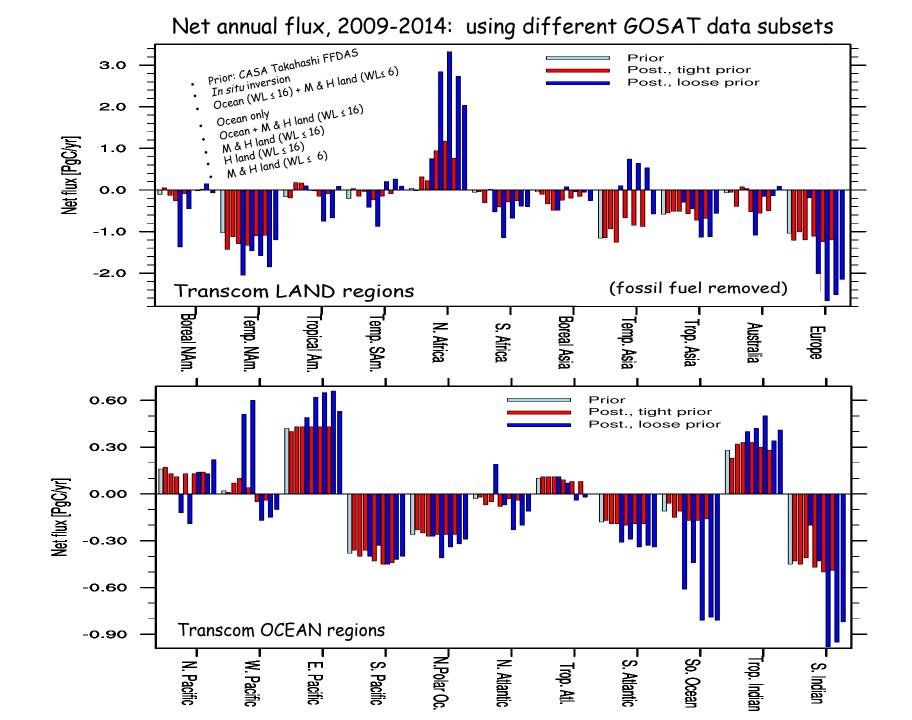
- Liu and Baker GOSAT inversions give similar results, for shift in flux from 2010 to 2011
- Less agreement at monthly time scale
- GOSAT data drive fluxes towards different values than in situ data do - filling in gaps, or adding biases?

Outline

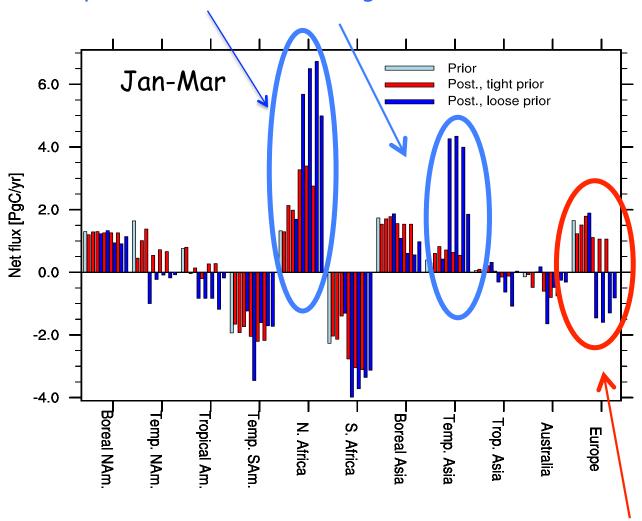
- Comparison of flux uncertainty from two similar GOSAT flux inversions (2010-2011)
- Comparison of flux estimates from same two inversions
- Impact of other assumptions (2009-2014)
 - Subset of GOSAT data used
 - High- and medium-gain nadir data over land
 - Glint data over ocean
 - Prior fluxes used

ACOS b3.5 GOSAT X_{CO2} , 2009-2014

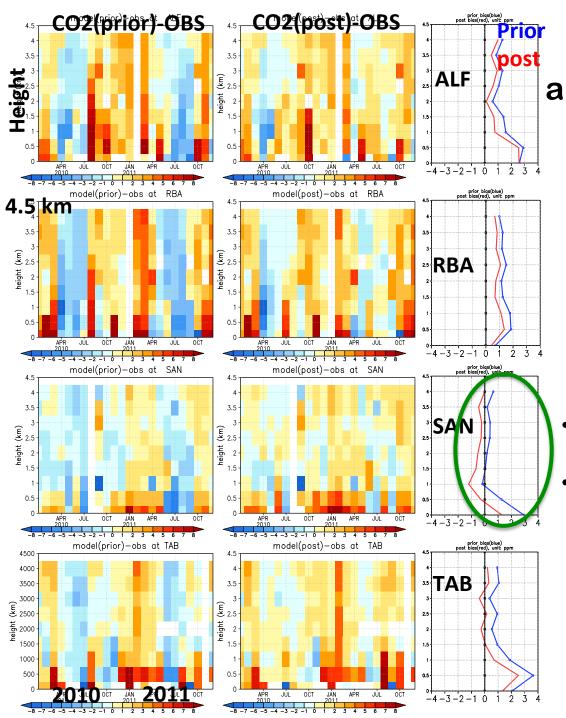

- Chris O'Dell's "lite" Level 2 product, with these additional data screened out:
 - south of 60° S and north of 75°N
 - retrieved X_{CO2} uncertainty of ≥ 1.5 ppm
 - "warn levels" of 17-19
- Number of scenes passing these screening criteria:
 - ~444,000 land, high-gain (non-desert areas)
 - ~87,000 land, medium-gain (desert areas)
 - ~420,000 ocean glint
- · Chris O'Dell's standard bias corrections applied
- Measurement uncertainty in inversion taken to be 60% higher than uncertainty given by retrieval
- Outliers greater than 30 from prior are deweighted

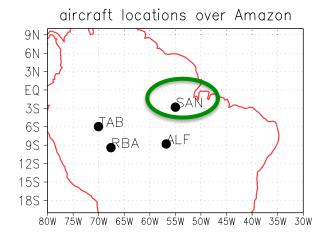

RMS mismatch to the GOSAT data [ppm], pre-inversion

					C	ocean glint data				M-gain land		H-gain land		
all data			>20	° N	Tropics	<20° S	N of Eq	S of Eq	>	>20° N	<20° N			
Shots 9			952 K	6	0 K	280 K	81 K	69 K	18 K		252 K	192 K		
			NOBM	1.862	1.3	84	1.252	1.238	1.689	1.239		2.577	1.895	
CASA	FFDA hour		Doney	1.857	1.3	97	1.268	1.241	1.696	1.238	ı	2.552	1.909	
		у [Takahashi	1.861	1.3	76	1.265	1.249	1.684	1.222	ı	2.571	1.903	
	CDIA month	ر ا م	NOBM	1.862	1.3	71	1.247	1.238	1.684	1.240	ı	2.576	1.890	
			Doney	1.852	1.3	81	1.260	1.240	1.690	1.238	ı	2.550	1.902	
		iiy [Takahashi	1.857	1.3	62	1.257	1.248	1.679	1.222	L	2.572	1.897	
SiB4	FFDA hourl	ا ،	NOBM	1.960	1.3	67	1.278	1.333	1.667	1.213		2.792	1.797	
		- 1	Doney	1.924	1.3	69	1.277	1.323	1.659	1.202		2.746	1.801	l
			Takahashi	1.941	1.3	53	1.283	1.349	1.657	1.207		2.783	1.802	l
	CDIA	~ I	NOBM	1.974	1.3	64	1.282	1.337	1.667	1.216		2.797	1.798	
	month		Doney	1.933	1.3	63	1.278	1.328	1.657	1.204		2.750	1.800	l
	111011611	'' '	Takahashi	1.951	1.3	50	1.285	1.354	1.656	1.210		2.788	1.802	
SiB3		ا ،	NOBM	1.930	1.4	-06	1.193	1.289	1.739	1.308		2.665	1.912	,
	FFDA		Doney	1.896	1.4	17	1.189	1.284	1.734	1.300	,	2.627	1.927	
	hourly		Takahashi	1.901	1.3	90	1.185	1.296	1.725	1.283		2.651	1.917	
			NOBM	1.939	1.3	92	1.192	1.283	1.738	1.305		2.668	1.903	
	CDIA		Doney	1.900	1.4	00	1.184	1.279	1.731	1.297		2.628	1.916	
	month	nly	Takahashi	1.906	1.3	76	1.181	1.291	1.723	1.280		2.655	1.907	
Ca	rbon	Mi	ller/ODIAC	1.794	1.2	29	1.191	1.230	1.689	1.289		2.455	1.884	
Tr	acker		FFDAS	1.800	1.2	38	1.195	1.229	1.694	1.288		2.453	1.888	
2013			CDIAC	1.793	1.2	28	1.187	1.228	1.691	1.288	١L	2.455	1.879	
													-	


CarbonTracker, which incorporates information from in situ CO_2 measurements, fits the GOSAT data better overall than the free-running flux models, but not for all GOSAT data types

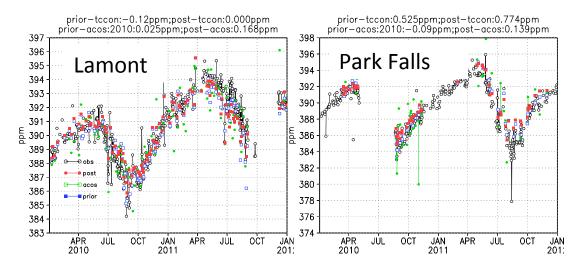
No one land biosphere model or combination of prior fluxes is obviously better than another at fitting the GOSAT data: which model is best depends on the type of GOSAT data.


The GOSAT-driven outgassing in North Africa and Temp. Asia, is centered during the NH winter.


The GOSAT data want to drive Europe towards a large uptake of CO₂ in the NH winter - unphysical!!

Thoughts on ACOS b3.5 GOSAT data, inversions

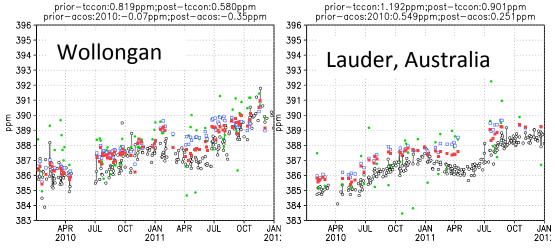
- Results depend less on the prior, more on the subset of GOSAT data used
- GOSAT M- and H-gain land data have biases that drive winter CO_2 outgassing in North Africa & Temp. Asia, with balancing uptake in Europe and elsewhere
- Using ocean glint data, and a reasonably-tight flux prior, mitigate the worst of this
- Warn-level filtering of M- and H-land data only partly successful: an improved bias correction needed for GOSAT land data
- GOSAT land data provide information not contained in ocean data - should be used, but bias-corrected first
- Comparison to independent data can guide the biascorrection



Verification against aircraft observations over Amazonia

- The mean posterior CO₂ bias is less than 1 ppm above 1 km.
- The posterior CO₂ bias is smaller than the prior CO₂ bias except in SAN

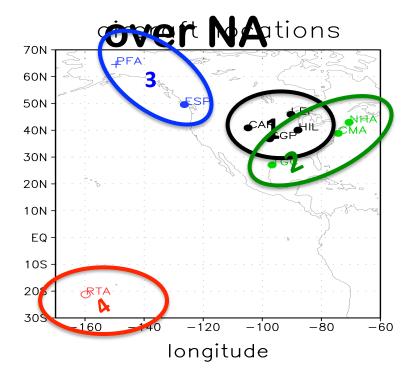
Verification against TCCON X_{CO2} observations



Black: TCCON

Green: ACOS

Blue: prior


Red: posterior

- The overall bias between posterior modeled $X_{\rm CO2}$ and TCCON $X_{\rm CO2}$ is less than 1 ppm.
- Assimilating ACOS observations has improved the fitting to TCCON X_{CO2} observations.

Verification against aircraft observations

• The posterior CO₂ seasonal cycle has been improved and the bias becomes smaller.